7.1 Integration by Parts

The product rule states that if \boldsymbol{f} and \boldsymbol{g} are differentiable functions, then

$$
\frac{d}{d x}[f(x) \cdot g(x)]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
$$

Taking the indefinite integral gives:

$$
\begin{gathered}
f(x) g(x)=\int\left[f(x) g^{\prime}(x)+f^{\prime}(x) g(x)\right] d x \\
f(x) g(x)=\int\left(f(x) g^{\prime}(x)\right) d x+\int\left(f^{\prime}(x) g(x)\right) d x
\end{gathered}
$$

We can rearrange this equation to be:

$$
\int\left(f(x) g^{\prime}(x)\right) d x=f(x) g(x)-\int\left(f^{\prime}(x) g(x)\right) d x
$$

This new formula is called Integration by Parts. Also if we let $\mathbf{u}=f(\mathbf{x})$ and $\mathbf{v}=\mathrm{g}(\mathbf{x})$ and differentiate we get: $\quad d u=f^{\prime}(x) d x$ and $d v=g^{\prime}(x) d x$

The formula for Integration by Parts becomes:

$$
\int u \cdot d v=u \cdot v-\int v \cdot d u
$$

Example:

$$
\begin{gathered}
\int x e^{x} d x \\
\text { Let } \boldsymbol{u}=\boldsymbol{x} \text { and } \boldsymbol{v}=\boldsymbol{e}^{\boldsymbol{x}} \\
\text { then } \boldsymbol{d} \boldsymbol{u}=\boldsymbol{d} \boldsymbol{x} \text { and } \boldsymbol{d} \boldsymbol{v}=\boldsymbol{e}^{x} \boldsymbol{d} \boldsymbol{x}
\end{gathered}
$$

Substitute this into the Integration by Parts formula:

$$
\begin{aligned}
& \int u \cdot d v=u \cdot v-\int v \cdot d u \\
& \int x e^{x} d x=x e^{x}-\int e^{x} d x \\
& \text { u dv u•v v du } \\
& \int x e^{x} d x=x \boldsymbol{e}^{x}-\boldsymbol{e}^{x}+\boldsymbol{C}
\end{aligned}
$$

Example: (Sometimes we have to use integration by parts more than once.)

$$
\begin{gathered}
\int\left(x^{2}+2 x\right)(\cos (x)) d x \\
\text { Let } \boldsymbol{u}=x^{2}+2 x \text { and } \boldsymbol{d} \boldsymbol{v}=\cos (x) d x \\
\text { then } \boldsymbol{d} \boldsymbol{u}=(2 x+2) d x \text { and } \boldsymbol{v}=\sin (x)
\end{gathered}
$$

(We have to choose one of the factors to be \mathbf{u} and let the other factor be dv.)

$$
\int\left(x^{2}+2 x\right)(\cos (x)) d x=\left(x^{2}+2 x\right) \cdot \sin (x)-\int \sin (x)(2 x+2) d x
$$

(Solve by this by Integration of Parts also)

$$
\begin{array}{ll}
u=2 x+2 & d v=\sin (x) \\
d u=2 d x & v=-\cos (x)
\end{array}
$$

$$
\begin{aligned}
\int\left(x^{2}+2 x\right)(\cos (x)) d x & =\left(x^{2}+2 x\right) \sin (x)-\left[(2 x+2) \cdot-\cos (x)-\int 2(-\cos (x)) d x\right] \\
& =\left(\boldsymbol{x}^{2}+\mathbf{2 x}\right) \sin (\boldsymbol{x})+(\mathbf{x}+\mathbf{2}) \cos (\boldsymbol{x})-\mathbf{2} \sin (\boldsymbol{x})+\boldsymbol{C}
\end{aligned}
$$

Now, if we combine the formula for integration by parts with Part 2 of the Fundamental Theorem of Calculus, we can evaluate definite integrals by parts.

$$
\left.\int_{a}^{b} f(x) g^{\prime}(x) d x=f(x) g(x)\right]_{a}^{b}-\int_{a}^{b} g(x) f^{\prime}(x) d x
$$

Example: Evaluate:

$$
\begin{aligned}
& \qquad \int_{1}^{2} \ln (x) d x \\
& \text { Let } \mathbf{u}=\ln (x) \text { and } \boldsymbol{d} \boldsymbol{v}=\boldsymbol{d} \boldsymbol{x} \\
& \text { then } \boldsymbol{d} \boldsymbol{u}=\frac{\mathbf{1}}{x} \boldsymbol{d} \boldsymbol{x} \text { and } \boldsymbol{v}=\boldsymbol{x} \\
& \qquad \begin{aligned}
\int_{1}^{2} \ln (x) d x & =\ln (x) \cdot x]_{1}^{2}-\int_{1}^{2} x \cdot \frac{1}{x} d x \\
& =\ln (x) \cdot x-x]_{1}^{2} \\
& =(\ln (2) \cdot 2-2)-(\ln (1) \cdot 1-1) \\
& =2 \ln (2)-2+1 \\
& =2 \ln (2)-\mathbf{1}
\end{aligned}
\end{aligned}
$$

Note: Sometimes it can be tricky in deciding which factor to be \mathbf{u} and $\mathbf{d v}$. If you try one way and it doesn't work, the switch the \mathbf{u} and $\mathbf{d v}$ and try again.

